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My research is broadly focused on mathematical modeling and analysis of multi-agent Human-Cyber-

Physical Systems (H-CPS). I am particularly interested in designing scalable data-driven control and opti-

mization frameworks and market mechanisms for societal-scale infrastructure systems. This includes smart

power grids, electric transportation systems, and energy-aware communities and buildings. H-CPS are net-

worked systems of physical assets with embedded intelligence and human-machine interfaces. Ubiquitous

intelligence and information exchange and the active involvement of humans in the control loop distinguish

them from their predecessors and gives them the potential to be more adaptive, resilient, and safe. However,

these new characteristics also make our future infrastructure vulnerable because no single engineering or

science discipline has all the right tools to design simple and scalable monitoring and control solutions to

manage their operations reliably and efficiently. My research interests lie in addressing this broad inter-

disciplinary challenge, where I often draw and build on theory from several disciplines including stochastic

optimization, learning theory, controls, power systems engineering, transportation engineering, statistical

signal processing, and game theory.

Next, I summarize selected prior contributions under four categories, which are presented in chrono-

logical order starting from my initial contributions in my PhD thesis.

Large-scale monitoring and control of electricity demand

Enabling demand response (DR) technologies to harness the intrinsic flexibility of end-use electricity demand

(load) is an inevitable step for efficient trading of high levels of non-dispatchable clean generation resources.

For the residential and commercial sectors, DR poses a highly complex problem that suffers from a curse

of dimensionality. Electricity load is comprised of a large number of heterogeneous subcomponents which

represent the load of appliances that are gradually plugged into the grid by customers with heterogeneous

preferences. The main focus of my PhD thesis is on reduced-order modeling frameworks for scalable control

and monitoring of large populations of electric appliances and accompanying incentive mechanisms with dif-

ferentiated service tiers for customer participation in direct control programs (see, e.g., [1,2]). The approach

is unique in that it does not discard the individual constraints of different appliances when approximating ag-

gregate load flexibility. Instead, we used a basic idea that is common in scalable multimedia applications for

graceful degradation: similar electricity consumption requests can be effectively bundled in clusters and their

aggregate flexibility can be captured by a representative linear state-space model. This approach enables

highly reduced computational and communication requirements for load modeling, market planning and

real-time control with adjustable margins of error (a tradeoff between scalability and reliability). Moreover,

differentiated (a.k.a., nonlinear) pricing schemes allow customers with higher degrees of flexibility to pay

less for their electric energy consumption. Lastly, our approach allows for anonymous interaction between

customers and the electricity retailer, a factor that can play a vital role in gaining customer trust for a

widespread implementation of direct load scheduling programs. Our method covers various load classes such

as thermostatically controlled loads [3, 4] and electric vehicles [5]. We have also investigated the benefits of

such reduced order models for market integration of DR [6,7].

Electric vehicle management in coupled power and transportation systems

Our societal infrastructures are complex interdependent networked systems. For example, since their in-

ception, power systems have depended on the delivery of fuels to generation plants through transportation

networks. Similar connections can be found between power networks and gas networks, data networks, water

networks, emergency response systems, etc. Such interdependencies are getting closer to real-time operations

as we increase stochasticity on the supply side and rely on DR to increase the use of green energy in our

power grids. Specifically, I am interested in the fact that by introducing new control measures such as DR

mechanisms to shift energy use in our societal infrastructure to times and locations at which energy is cheap,

we introduce real-time feedback loops between various processes and services that are potentially handled by

separate organizations and have been optimized independently until now. Hence, we are further increasing

their control system design complexity both in terms of analytical modeling and optimization as well as

economic mechanism design to align the interests of the many organizations involved.



Power and transportation networks are arguably the quintessential coupled infrastructure system in which

all of the above challenges are present. I am especially interested in the role of transportation electrification

in coupling power and transportation system operations. Designing a reliable Electric Vehicle (EV) smart

battery charging scheme requires considering the fact that EVs are primarily modes of transportation. In

the past six years, I have dedicated significant effort to design and implementation of mobility-aware

routing and charging mechanisms for electric vehicles. The problem combines features of large-

scale optimization, optimal control, traffic routing, game theory, multi-agent system theory, and power

system engineering - hence, modeling complexity is at its heart. The paper [8], which was published in

TCNS, was the first to mathematically model the spatial coupling effects between power and transportation

networks due to electric vehicle mobility and propose distributed coordination and pricing mechanisms

that can drive both networks towards a socially optimal operational point. A subsequent publication in

TCNS [9] explores the temporal dynamics of the coupled power and transportation networks problem in

the context of charging service providers who wish to eliminate queues at their charging stations. Lastly, a

third publication in TCNS [10] proposes computational methods for the optimal coordination of autonomous

mobility-on-demand (AMoD) systems, with a central focus on accounting for the couplings between the power

and transportation networks. AMoD is a rapidly developing mode of transportation wherein self-driving,

electric vehicles transport passengers on demand (similar to an Uber system, but with self-driving, electric

vehicles). The ability to intelligently route empty vehicles will provide a unique opportunity for joint traffic

management and energy dispatch. For example, autonomous electric vehicles could act as distributed mobile

storage devices, providing a support mechanism for integration of intermittent renewable energy resources

and relieving congestion in energy distribution network. While [10] adopts a welfare-maximizing model for

the AMoD service provider, our most recent TCNS paper [11] studies the effects of having profit-maximizing

AMoD service providers under monopolistic and duopolistic settings on customer welfare and ride prices.

Note that since the above-mentioned papers all adopt a deterministic network flow formulation, they cannot

generate real-time solutions or handle stochasticities. As such, we have further studied real-time algorithms

that consider stochasticity of network conditions, integrality constraints in vehicle routing decisions, or lack

of accurate statistics about system parameters, e.g., [12–14]. Akin to my work on differentiated pricing

mechanisms for direct load control, we have also proposed differentiated routing and pricing algorithms

that enable direct allocation of users to electric vehicle fast charging stations in order to efficiently operate a

network of stations for welfare or profit maximization [15]. Moreover, in addition to my theoretical studies on

this problem, I have also been actively involved in real-world implementations of smart charging algorithms

at workplace charging facilities at the Google Mountain View campus, SLAC national lab, and Stanford

University’s shuttle system.

Bandit learning for cyber-physical systems

Stochastic bandit optimization algorithms have long found applications in fields where some characteristics

of the users’ response are not known and can only be learned through a limited number of queries with

noisy observations, while controlling cumulative reward gained during the learning process. This is a very

common challenge in H-CPS due to the involvement of humans in the loop. For example, bandit optimiza-

tion can naturally be employed towards increasing efficiency in societal systems where some characteristics

of user response are not known and has to be learned in a few interactions, e.g., to optimally price elec-

tricity or dispatch a population of demand response assets in power systems. However, one cannot directly

adopt existing bandit optimization algorithms for such safety-critical networks. For example, in the case of

data-driven optimization of demand response or electricity pricing, dispatch signals posted by the bandit

algorithm might violate distribution system constraints as the response of users to dispatch signals are not

fully known and cannot be deterministically accounted for in the distribution system power flow constraints.

To address this challenge, my goal is to derive regret-optimal bandit optimization policies that would

honor a system’s safety and reliability requirements in spite of uncertainty about system parameters.

Several publications including papers published in NeurIPS 2019 and 2020 [16–18] study the effect of safety

constraints in linear stochastic bandits and provide theoretical regret guarantees for several new safe

learning algorithms (extensions to Gaussian Processes considered in [19]). While such linear settings are ad-

mittedly much simpler than those required by most H-CPS applications, they provide intuition on the basic

principles of devising safe algorithms that can efficiently balance exploration and exploitation. Generalizing

these insights, our work in [20], published in TSG, has also explored the application of safe bandit opti-

mization for managing electricity demand with unknown price response from users, while respecting



distribution system constraints. More recently, we have been investigating the effect of multiple decision

makers common to many CPS in the design of multi-agent bandit algorithms [21], as well as model selection

methods that start with multiple hypotheses about user parameters and adaptively learn the best model

for linear bandit problems [22]. In particular, the agent has (potentially erroneous) information about the

models but does not know the identity of the one(s) that the linear bandit task has been selected from. The

goal of the agent is to identify the true model and transfer its collected experience to speedup the learning

of the task at hand.

Distributed control and decision making in adversarial environments

Multi-agent systems commonly rely on the collective behavior of decision-makers distributed over a network,

which can make them vulnerable to various forms of adversarial influences. I am interested in charac-

terizing equilibria in such adversarial environments and designing algorithmically-robust learning and

optimization mechanisms to protect against such vulnerabilities. Specifically, focused on distributed re-

source allocation through network utility maximization (NUM), our first line of work considers how

man-in-the-middle Byzantine attacks can lead to non-convergence and infeasibility issues. Our work in

TCNS [23] proposes attack-resilient primal-dual algorithms which rely on robust mean estimation and gra-

dient averaging techniques to address these issues. In a related line of work, [24–26] consider the effect

of probabilistically corrupt gradients on the convergence of gradient descent algorithms in the potentially

broader scope of distributed optimization algorithms.

Considering a similar theme of distributed adversarial influence in the context of graphical coordi-

nation games (a game where agents in a network choose between two conventions and derive benefits

from coordinating neighbors), our TCNS paper [27] studies the effects that system-level information and

complexity of strategy space have on an adversary’s ability to degrade aggregate welfare. Furthermore,

to defend against such attacks in graphical coordination games, our publication in TAC [28] studies how

a system operator can tweak log-linear learning algorithms to defend against 1) broad attacks, where the

adversary distributes targeted incentives to all agents in the network to promote incoordination and 2)

focused attacks, where the adversary can force a selected subset of the agents to commit to a prescribed

convention without regards to their neighbors’ actions. The paper’s main contribution is to characterize the

operator’s fundamental trade-off between security against worst case broad attacks and vulnerability from

focused attacks.

Last but not least, we have recently considered the challenges of distributed decision making in such

adversarial environments in a model of competitive resource allocation known as the Colonel Blotto game

(or its close variant, General Lotto), where two or more Colonels compete over control of multiple battlefields.

Our work in [29] characterizes the impact of the division of resources among multiple subplayers competing

against the same adversary on the best-case efficiency of the resulting collective behavior, where the main

result unintuitively shows that a more balanced division of resources between subplayers can offer better

performance guarantees than a more centralized allocation. Focused on quantifying the value of information

in competitive resource allocation, papers [30, 31] consider the effect of asymmetric uncertainties about the

players’ resource endowments or battlefield valuations and how they could offer strategic advantages to one

player.
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